Planetary Survival in the 21st Century: Confronting Land Degradation, Biodiversity Loss, and Climate Change

By Ezra Ho
2013, Vol. 5 No. 01 | pg. 2/2 |

Not only does conversions of forest to agricultural cropland affects the climate system, but climate change can destabilize agricultural systems. As GHG emissions accumulate resulting in elevated global temperatures, destabilizing the climate system, extreme weather patterns are predicted to increase in both intensity and frequency (IPCC, 2007). Precipitation patterns shift both in timing and intensity due to changes in evapotranspiration rates, resulting in increased drought stress in major wheat and maize-producing countries like China, Pakistan, Turkey and Iran (Forster et al, 2012). In Sub-Saharan Africa, arid and semi-arid areas are projected to increase by 50% (De Schutter, 2011).

On the other extreme end of climatic events, an increase in the intensity of monsoons could result in flood surges which can destroy entire crops, affecting agricultural systems and livelihoods. Moreover, sea level rise coupled with the acidification of the oceans could lead to increased salinization of the soil, reducing agricultural productivity. Finally pests and disease prevalence are also strongly influenced by changes in weather patterns and could contribute to increased crop losses (IAASTD, 2009; FAO, 2011a). By 2080, 600 million additional people could be at risk of hunger from climate change (De Schutter, 2011).

Aside from affecting food security through climate change impacts, the increased demand for land and agricultural crops by financial markets (Anseeuw et al, 2012) is threatening the food security of millions in the developing world. According to the Food and Agriculture Organization (FAO), almost 870 million people were chronically undernourished between the period 2010-2012 (FAO, 2012). This does not need to be so, and as evidence, the 203 million hectares of land acquired between 2000 - 2010 has the potential to feed all the chronically malnourished people globally (Geary, 2012). Furthermore, up to a third of food produced for human consumption ends up wasted due to logistical or bureaucratic complications (Toulmin et al, 2011).

Thus, most hunger in the world is due to poverty (De Schutter, 2011), which is exacerbated by higher food prices caused by speculative activity. While 70% of the world's rural population belong to the agricultural economy (Adhikari and Nadella, 2011), most small-scale farmers are net-buyers of food since they do not produce enough food for their families (FAO, 2011b). Due to the linkages between agricultural and energy markets, high and volatile food prices caused by speculative activity are depriving millions of adequate food (FAO, 2011a; FAO, 2011b). And because they cannot afford food, people in the developing world are malnourished.

This relationship between poverty, food insecurity and malnutrition creates a vicious poverty trap where people in the developing world are unable to engage in productive activity due to poor health from inadequate nutrition. Moreover, the cycle perpetuates across generations as the impact of malnutrition is even greater on children whose stunted developmental process will effect them for the rest of their adult life (FAO, 2011b). Additionally, poverty also acts as a driver of land degradation as the rural poor often lack the means for sustainable practices such as agricultural knowledge and technology as well as finance.

Finally, land degradation as a result of deforestation also threatens biodiversity. Occupying 30% of the earth's land surface, forests contain more than 80% of terrestrial animal and plant species (Secretariat of the Convention on Biological Diversity, 2011). Not only does biodiversity help regulate the climate system through carbon sequestration, but the systemic interaction of flora and fauna contributes to various ecosystem services that are fundamental to human well-being. Services such as the provision of food, water, medicine and fuel; regulation of earth system processes such as the climate and supporting services like nutrient cycling and soil formation (MEA, 2005).

In fact, research has shown that biodiversity loss is as significant to ecosystem health as are other direct global drivers of environmental change such as ozone depletion or elevated CO2 levels (Hooper et al, 2012). However, because of the current drivers of land-use change, such as the increasing demand for biofuels, lush biodiversity-rich forests are being decimated in order to clear land for plantations, which deprives species of their habitat and reduces the integrity of the ecosystem (Gibson et al, 2011; WWF, 2012b). Such loss is particularly detrimental to the rural poor who largely depend on the above ecosystem services to provide for the necessities of life and their livelihoods (MEA, 2005; WWF, 2012a; FAO, 2012).

Indonesia, one of the world's biodiversity hotspots, has lost a significant portion of its rainforests and peatlands in the last 10 years as businesses convert forest into biofuel plantations (Miettinen et al, 2011; Fargione et al, 2008; Anseeuw et al, 2012). Since 1985, the island of Sumatra has lost more than half of its forest cover. As a result, there are only about 400 Sumatran tigers and fewer than 2,800 Sumatran elephants left in the wild and should deforestation continue, it is probable that these species will go extinct (WWF, 2012b). Beyond iconic conservation symbols, the loss of biodiversity and the decay of ecosystems caused by land degradation represents a dire threat to the healthy functioning of the earth system.

Thus far, it is clear that land degradation has far-reaching impacts which interact in complex ways that cut across issues ranging from climate change, food security, poverty to biodiversity loss. If we are to successfully address land degradation, it is clear that an integrated approach to these problems is required. Of the many approaches being taken presently to ameliorate rates of land degradation, most fall under market-based solutions. The first of which is forest certification, which attempts to ensure that forests are sustainably managed for the extraction of timber and non-timber forest products. Labels such as the Forest Stewardship Council (FSC) and the Malaysian Timber Certification Council seek to promote sustainable forest practices that aims to minimize human impacts on the ecosystem.

In doing so, consumers are informed as to the sustainability of the said product, and by voting with their dollar, they can promote more sustainable businesses practices. Requirements can include measures like reduced-impact logging, which seeks to minimize the impact of logging on the soil and forest ecosystem by regulating the area of logging and the planning of roads and landings. In fact, a landmark study found that forest management practices associated with forest certification significantly benefited biodiversity and ecosystem health (van Kuijk et al, 2009). At the same time, more research is needed to enhance the understanding of species response to managed logging since every forest has different variables. While biodiversity and ecosystems are negatively impacted by logging no matter how sustainably managed it is, we require such ecosystem services for the continual functioning of our society.

Barring systemic shifts that allow us to align our consumption patterns with the Earth's carrying capacity, we will have to balance the managed use of such natural resources with conservation strategies. The second approach that is dominant in present discourse is the integration of sustainable land practices with climate change mitigation and conservation efforts. Under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) framework, local communities will receive payments of carbon credits through the government for the sustainable management and conservation of forests as a carbon sink towards climate change mitigation (Thompson et al, 2012).

While the idea has been popularized as an excellent approach to integrating natural capital valuation into decision-making, there have been practical obstacles and limitations in translating the framework into practical policies. To begin with, it is highly ironic that market-based solutions are being applied to solve the world's largest market failure. While appearing sound in theory, REDD+ has aggravated land degradation plus resulting in human rights violations. Because most REDD+ proposals take place in developing countries with weak governance institutions and capacity, corruption is often a barrier towards sound enforcement of conservation imperatives and including local communities in sharing the financial benefits (Karsentya and Ongolo, 2012).

Moreover, under the UNFCCC framework definition, monoculture plantations growing biofuels qualify as natural forests (Huettner, 2012). Consequently, companies are buying up vast tracts of land for their carbon sequestration potential, in the process side-lining indigenous communities and customary law (Anseeuw et al, 2012; Thompson et al, 2012). In order for REDD+ to constitute an effective measure against land degradation, the rights and customs of indigenous peoples have to be respected while ensuring that governance structures are democratic, robust and transparent (Schroeder, 2010; Thompson et al, 2012; Huettner, 2012).

In contrast to the top-down approaches that have characterized mainstream approaches to combating land degradation, an emerging idea in development circles is to promote locally-controlled forestry. Not only is it based on experienced management, meaning that local communities are able to better conserve the land through accumulated knowledge, but it also paves the path for equitable development as communities are able to benefit from their natural resources. Because they are directly invested in the continual integrity and sustainability of the land, there are significant social, economic and environmental benefits from local management.

In Java, Indonesia, community-based forestry contributed to an increase in forest cover by 6 million hectares from 1985-1997 (Macqueen at al, 2012). Building on the importance of local management, improving women's rights in developing countries would also help to promote natural resource management, not to mention food security and developmental goals (FAO, 2011a). Although women constitutes almost half of the agricultural workforce in the developed world, they are often discriminated against because of rigid gender roles. As a result, they have restricted access to agricultural resources and technology, financial services and legal representation.

This inequitable situation, if bridged, would allow agricultural output to rise 2.5-4%, reducing the number of malnourished people by 100-150 million people (FAO, 2011a). Moreover, it has also been demonstrated that women make more productive use of resource as the primary care-givers of society, having a greater influence on the education, health and the welfare of the family (Mehra, 1997; Bernasek, 2003). Tapping this largely ignored segment of the population would greatly improve the developmental process of a country. Hence, in combination, promoting the local management of natural resources plus empowering women is an effective strategy in land conservation as well as alleviating poverty.

Lastly, promoting small-scale, agroecological solutions would greatly improve food security, climate resilience and land management. While agriculture has been attributed a significant portion of GHG emissions, the elephant in the room is that it refers to the industrial farming monopolized by large agricultural and chemical corporations (ETC Group, 2011). In contrast to the picture of small-scale ecological farming in developing countries, this impact is largely due to industrial farming practices which rely heavily on fossil fuel-based inputs such as fertilizer, pesticides and long-distance transport.

On the other hand, agroecology practices such as agroforestry are based on patterns found in natural systems. In a food forest for instance, a dense arrangement of trees and crops ensure a biodiverse environment where plants, animals and insects support each other. All inputs are recycled as in natural systems, leaving no waste behind. Hence, they are sustainable by design. And because they leverage on natural synergies, such practices are able to achieve a higher net agricultural output compared to industrial farming systems (De Schutter, 2011). Moreover, agricultural diversity also allows for greater resilience against climate change by promoting healthy soil conditions.

In closing, land degradation is a complex environmental issue that involves social, economic and political drivers that cannot be addressed without an integrated approach. Cutting across food security, poverty, climate change and human rights, addressing land degradation and biodiversity loss requires an multidisciplinary approach and multi-stakeholder integration. At a time where the stakes are hundreds of millions of starving people and the long term survival of our planet, we require a new narrative.

A vision of small-scale, inclusive and ecologically sound agriculture promises to lift the world out of poverty, inequality and hunger. Now, we only need the courage to stand against the intransigent guardians of the status quo. In the words of anthropologist Margaret Mead, "Never doubt that a small group of thoughtful, committed citizens can change the world. Indeed, it is the only thing that ever has." And so, we must.


References

Adhikari, B and Nadella, K. 2011. Ecological economics of soil erosion: a review of the current state of knowledge. Annals of the New York Academy of Sciences. 1219: 134–152. DOI: 10.1111/j.1749-6632.2010.05910.x. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.2010.05910.x/pdf

Anseeuw, W., L. Alden Wily, L. Cotula, and M. Taylor. 2012. Land Rights and the Rush for Land: Findings of the Global Commercial Pressures on Land Research Project. International Land Coalition. Retrieved from http://www.landcoalition.org/sites/default/files/publication/1205/ILC%20GSR%20report_ENG.pdf

Barker T., I. Bashmakov, L. Bernstein, J. E. Bogner, P. R. Bosch, R. Dave, O. R. Davidson, B. S. Fisher, S. Gupta, K. Halsnæs, G.J. Heij, S. Kahn Ribeiro, S. Kobayashi, M. D. Levine, D. L. Martino, O. Masera, B. Metz, L. A. Meyer, G.-J. Nabuurs, A. Najam, N. Nakicenovic, H. -H. Rogner, J. Roy, J. Sathaye, R. Schock, P. Shukla, R. E. H. Sims, P. Smith, D. A. Tirpak, D. Urge-Vorsatz, D. Zhou. 2007. Technical Summary: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved from http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-ts.pdf

Bernasek, A. 2003. Banking on Social Change: Grameen bank lending to women. International Journal of Politics, Culture, and Society. 16 (3): 369-385. Retrieved from http://www.jstor.org.libproxy1.nus.edu.sg/stable/20020172

Crutzen, P.J, Steffen, W. and McNeil, J.R. 2007. The anthropocene: are humans now overwhelming the great forces of nature? AMBIO: A Journal of the Human Environment. 36 (8); 614-621. Retrieved from http://allenpress.com/pdf/ambi-36-08-06_614..621.pdf

Dale, V.H. 1997. The relationship between land-use change and climate change. Ecological Applications. 7 (3): 753-769. Retrieved from http://www.jstor.org.libproxy1.nus.edu.sg/stable/2269433

De Schutter, O. 2011, 8 March. Agroecology and the Right to Food. Report presented at the 16th Session of the United Nations Human Rights Council [A/HRC/16/49]. Retrieved from http://www.srfood.org/images/stories/pdf/officialreports/20110308_a-hrc-16-49_agroecology_en.pdf

Delgado, C.L. 2003. Rising consumption of meat and milk in developing countries has created a new food revolution. The American Society for Nutritional Sciences. 133 (11): 3907S-3910S. Retrieved from http://jn.nutrition.org/content/133/11/3907S.full.pdf+html

D’Odoricoa, P., Bhattachana, A.,Davisa, K.F., Ravib, S. and Runyan, C.W. 2012. Global desertification: drivers and feedbacks. Advances in Water Resources. Retrieved from http://dx.doi.org.libproxy1.nus.edu.sg/10.1016/j.advwatres.2012.01.013

ETC Group. 2011. Who Will Control the Green Economy? Retrieved from http://www.etcgroup.org/sites/www.etcgroup.org/files/publication/pdf_file/ETC_wwctge_4web_Dec2011.pdf

Fargione, J., Hill, J., Tilman, D., Polasky, S. and Hawthorne, P. 2008. Land clearing and the biofuel carbon debt. Science. 319 (5867): 1235-1238. DOI: 10.1126/science.1152747. Retrieved from http://www.sciencemag.org.libproxy1.nus.edu.sg/content/319/5867/1235.full.pdf

Food and Agricultural Organisation (FAO). 2011a. The State of Food and Agriculture: Women in Agriculture, closing the gender gap in development. Retrieved from http://www.fao.org/docrep/013/i2050e/i2050e.pdf

Food and Agriculture Organisation (FAO). 2011b. The State of Food Insecurity in the World: How does international price volatility affect domestic economic and food security? Retrieved from http://www.fao.org/docrep/014/i2330e/i2330e.pdf

Food and Agriculture Organisation (FAO). 2012. The State of Food Insecurity in the World 2012: Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. Retrieved from http://www.fao.org/docrep/016/i3027e/i3027e.pdf

Forster, P., Jackson, L., Lorenz, S., Simelton, E., Fraser, E and Bahadur, K. 2012. Food Security: Near future projections of the impact of drought in Asia. The Center for Low Carbon Futures. Retrieved from http://intranet.iisd.ca/shared/administration/ic%20files/minisis%20pdfs/Forster3.pdf

Geary, K. 2012. Oxfam, Great Britain. Our Land, Our Lives: Time out on the global land rush. Retrieved from http://www.oxfam.org/sites/www.oxfam.org/files/bn-land-lives-freeze-041012-en_1.pdf

Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow, J., Peres, C.A., Bradshaw, C.J.A., Laurance, W.F., Lovejoy, T.E and Sodhi, N.S. 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature. 478: 378–381. doi:10.1038/nature10425. Retrieved from http://www.nature.com.libproxy1.nus.edu.sg/nature/journal/v478/n7369/full/nature10425.html

GRAIN. 2011, September 28. Food and climate change: the forgotten link. Retrieved from http://www.grain.org/article/entries/4357-food-and-climate-change-the-forgotten-link

Greenpeace International. 2012. Driving Destruction in the Amazon: How steel production is throwing the forest into the furnace. Retrieved from http://www.greenpeace.org/international/Global/international/publications/forests/2012/Amazon/423-Driving-Destruction-in-the-Amazon.pdf

Hooper, D.U., Adair, E.C., Cardinale, B.J., E. K. Byrnes, J., Hungate, B.A., Matulich, K.L., Gonzalez, A., Duffy, J.E., Gamfeldt. L & O’Connor, M.I. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature. 486: 105–108. doi:10.1038/nature11118. Retrieved from http://www.nature.com.libproxy1.nus.edu.sg/nature/journal/v486/n7401/full/nature11118.html

Huettner, M. 2012. Risks and opportunities of REDD+ implementation for environmental integrity and socio-economic compatibility. Environmental Science & Policy. 15 (1): 4-12. Retrieved from http://dx.doi.org.libproxy1.nus.edu.sg/10.1016/j.envsci.2011.10.002

International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD). 2009. Synthesis Report : A Synthesis of the Global and Sub-Global IAASTD Reports . Retrieved from http://www.agassessment.org/reports/IAASTD/EN/Agriculture%20at%20a%20Crossroads_Synthesis%20Report%20(English).pdf

Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: Synthesis Report. Retrieved from http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_frontmatter.pdf

Karsentya, A and Ongolo, S. 2012. Can “fragile states” decide to reduce their deforestation? The inappropriate use of the theory of incentives with respect to the REDD mechanism. Forest Policy and Economics. 18: 38-45. Retrieved from http://dx.doi.org.libproxy1.nus.edu.sg/10.1016/j.forpol.2011.05.006

Kissinger, G., M. Herold and V. De Sy. 2012. Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+ Policymakers. Lexeme Consulting. Retrieved from http://www.theredddesk.org/sites/default/files/resources/pdf/2012/6316-drivers-deforestation-report.pdf

Knaup, H., Schiessl, M and Seith, A. 2011, September 1. Speculating with Lives: How Global Investors Make Money Out of Hunger. Spiegel International. Retrieved from http://www.spiegel.de/international/world/speculating-with-lives-how-global-investors-make-money-out-of-hunger-a-783654.html

Macqueen, D., deMarsh, P., Pandey, G.S., Diaz, E.C., Robinson, L and Lewis, S. 2012. Big Ideas in Development: Investing in locally-controlled forestry. International Institute for Environment and Development (IIED). London: IIED.

Mehra, R. 1997. Women, empowerment, and economic development. Annals of the American Academy of Political and Social Science. 554: 136-149. Retrieved from http://www.jstor.org.libproxy1.nus.edu.sg/stable/1049571

Miettinen, J., Shi, C and Liew, S.C. 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biology. 17 (7): 2261–2270. DOI: 10.1111/j.1365-2486.2011.02398.x. Retrieved from http://onlinelibrary.wiley.com.libproxy1.nus.edu.sg/doi/10.1111/j.1365-2486.2011.02398.x/pdf

Millennium Ecosystem Assessment (MEA). 2005. Ecosystems and Human Well-being: Synthesis. Retrieved from http://www.millenniumassessment.org/documents/document.356.aspx.pdf

Mölders, N. 2012. Impact of land-cover and land-cover changes. Land-Use and Land-Cover Changes Atmospheric and Oceanographic Sciences Library. 44: 39-115. Retrieved from http://link.springer.com.libproxy1.nus.edu.sg/content/pdf/10.1007%2F978-94-007-1527-1_3

Murphy, R., Woods, J., Black, M. and McManus, M. 2011 Global developments in the competition for land from biofuels. Food Policy. 36 (1): S52–S61. Retrieved from http://dx.doi.org.libproxy1.nus.edu.sg/10.1016/j.foodpol.2010.11.014

Nyssena, J., Poesenb, J., Haregeweync, N. and Parsons, T. 2008. Environmental change, geomorphic processes and land degradation in tropical highlands. CATENA. 75 (1): 1-4. Retrieved from http://dx.doi.org.libproxy1.nus.edu.sg/10.1016/j.catena.2008.04.010

Pimentel, D. 2000. Soil erosion and the threat to food security and the environment. Ecosystem Health. 6 (4): 221-226. DOI: 10.1046/j.1526-0992.2000.006004221.x. Retrieved from http://onlinelibrary.wiley.com/doi/10.1046/j.1526-0992.2000.006004221.x/pdf

Searchinger, T., Heimlich, R.,Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D. and Yu, T.H. 2008. Use of U.S. croplands for biofuels increases greenhouse gases Through emissions from land-use change. Science. 319 (5867): 1238-1240. DOI: 10.1126/science.1151861. Retrieved from http://www.sciencemag.org.libproxy1.nus.edu.sg/content/319/5867/1238

Secretariat of the Convention on Biological Diversity (CBD). 2010. Global Biodiversity Outlook 3. Retrieved from http://www.cbd.int/doc/publications/gbo/gbo3-final-en.pdf

Schroeder, H. 2010. Agency in international climate negotiations: the case of indigenous peoples and avoided deforestation. International Environmental Agreements: Politics, Law and Economics. 10 (4): 317-332. DOI: 10.1007/s10784-010-9138-2. Retrieved from http://www.springerlink.com.libproxy1.nus.edu.sg/content/yq78x9223664551w/fulltext.pdf

Sibaud, P. 2012. Opening Pandora's Box: The New Wave of Land Grabbing by the Extractive Industries and the Devastating Impact on Earth. The Gaia Foundation. Retrieved from http://www.gaiafoundation.org/sites/default/files/PandorasBoxReportFinal.pdf

Spracklen, D.V., Arnold, S.R and Taylor, C.M. 2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature. 489 (7415): 282–285. doi:10.1038/nature11390. Retrieved from http://www.nature.com/nature/journal/v489/n7415/pdf/nature11390.pdf

Thompson, M.C., Baruah, M and Edward R. Carr. 2012. Seeing REDD+ as a project of environmental governance. Environmental Science & Policy. 14 (2): 100-110. Retrieved from http://dx.doi.org.libproxy1.nus.edu.sg/10.1016/j.envsci.2010.11.006

Toulmin, C., Borras, S., Bindraban, P., Mwangi, E. and Sauer, S. 2011. Land Tenure and International Investments in Agriculture: A Report by the UN Committee on Food Security High Level Panel of Experts. Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE-Land-tenure-and-international-investments-in-agriculture-2011.pdf

United Nations Conference on Trade and Development (UNCTD). 2011. Price Formation In Financialized Commodity Markets: The Role Of Information. Retrieved from http://unctad.org/en/Docs/gds20111_en.pdf

United Nations Department of Economic and Social Affairs (UNDESA). 2004. World Population to 2300. Retrieved from http://www.un.org/esa/population/publications/longrange2/WorldPo

United Nations Environment Programme (UNEP). 2012. Global Environment Outlook-5: Environment for the future we want. Retrieved from http://www.unep.org/geo/pdfs/geo5/GEO5_report_full_en.pdf

United Nations Framework Convention on Climate Change (UNFCCC). 2009. Draft Decision CP.15. 15Th Session of the Conference of the Parties. Retrieved from http://unfccc.int/resource/docs/2009/cop15/eng/l07.pdf

van Kuijk, M., Putz, F.E. and Zagt, R.J. 2009. Effects of forest certification on biodiversity. Tropenbos International. Retrieved from http://www.tropenbos.org/file.php/52/forest_certification_and_biodiversity.pdf

Worldwide Fund for Nature (WWF). 2012a. Don't Flush Tiger Forests: Toilet Paper, U.S. Supermarkets and the Destruction of Indonesia’s Last Tiger Habitats . Retrieved from http://assets.worldwildlife.org/publications/39/files/original/Don%27t_Flush_Tiger_Forests_Report.pdf?1344860128

Worldwide Fund for Nature (WWF). 2012b. Living Planet Report: Biodiversity, biocapacity and better choices. Retrieved from http://awsassets.panda.org/downloads/1_lpr_2012_online_full_size_single_pages_final_120516.pdf

Suggested Reading from Inquiries Journal

Much debate has recently arisen over China’s and India’s responsibilities as related to climate protection. These two countries have repeatedly pleaded that their emissions be judged on a per-capita basis, since their per-capita emissions pale in comparison to those of the global North, and they have thus argued that the rest of the world should not insist that they slash emissions. In contrast, Western powers have maintained that the... MORE»
Advertisement
In December 1948, the United Nations adopted the Universal Declaration of Human Rights, which recognized the universal human right to food. Most recently in July 2010, the U.N. General Assembly adopted resolution 64/292 that recognized the human right to water as well. While food and water are of vital importance to the security... MORE»
In recent years, climate change has been increasingly framed as a security issue, with some theorists going so far as to call it the most important security issue of the 21st century. This paper will examine the relationship... MORE»
The urgency of concern over the earth’s biodiversity has increased over the last couple of decades. This has resulted in the formation of the Convention of Biodiversity which declared in 2002 that it would have achieved a ‘significant reduction of the current rate of biodiversity loss at the global, regional and national level as a contribution to poverty alleviation and to the benefit of all life on Earth’ by 2010.1 Consequently... MORE»
Submit to Inquiries Journal, Get a Decision in 10-Days

Inquiries Journal provides undergraduate and graduate students around the world a platform for the wide dissemination of academic work over a range of core disciplines.

Representing the work of students from hundreds of institutions around the globe, Inquiries Journal's large database of academic articles is completely free. Learn more | Blog | Submit

Follow IJ

Latest in Environmental Studies

2021, Vol. 13 No. 09
After thousands of years of innovation, humankind has shaped the modern world into a new planetary epoch: the Anthropocene. This paper connects the human propensity to carve our comfortable, convenient civilizations into our local environments with... Read Article »
2020, Vol. 12 No. 09
Though electronic products are ubiquitous in the modern Western world, most people are not aware of the origins of the batteries that power devices such as laptop computers and mobile phones. Lithium-ion batteries, though used primarily in wealthy... Read Article »
2017, Vol. 9 No. 12
Climate change is already altering our biosphere and is projected to bring about monumental changes to our planet’s environment, changes which are unprecedented in human history. Numerous social groups have drawn upon a wide assortment of... Read Article »
2017, Vol. 9 No. 05
Is it possible to objectively define the Anthropocene? This essay argues that whether or not it is precisely definable as a geological epoch, its true value, as a concept grounded in futurity, lies within the social realm. The origins of the term... Read Article »
2013, Vol. 3 No. 1
Published by Clocks and Clouds
Postmaterialist values, those that emphasize higher-order human needs, have become widely accepted as the determining force behind environmentalism in the West. Little research has been dedicated to studying the importance of these values outside... Read Article »
2017, Vol. 9 No. 03
In Gallup’s 2016 environment poll, 64 percent of U.S. adults are now worried a “great deal” or “fair amount” about global warming, with a record 65 percent attributing warming primarily to human activities (1). These... Read Article »
2016, Vol. 6 No. 1
Despite all the information we have regarding climate change and the potential perils of continuing on our path of consumption, people are slow to make the necessary changes. Our tendency to live habitually and the dampening effect continuous negative... Read Article »

What are you looking for?

FROM OUR BLOG

5 Tips for Publishing Your First Academic Article
How to Read for Grad School
How to Manage a Group Project (Video)